EINE NEUE EIGENSCHAFT DES FLÄCHENBÜSCHELS 2. GRADES

JEDNO SVOJSTVO PRAMENA PLOHA 2. STUPNJA

Vilko Niče, Zagreb

Sonderabdruck aus GLASNIK MATEMATIČKI 3 (23) (1968), 261—263

Stamparski zavod »Ognjen Prica« Zagreb, Savska c. 31, 1968.

EINE NEUE EIGENSCHAFT DES FLÄCHENBÜSCHELS 2. GRADES

Vilko Niče, Zagreb

Einleitung

Alle eine gemeinsame Raumkurve 4. Ordnung I. Art enthaltenden Flächen 2. Grades bilden, wie bekannt, ein Flächenbüschel 2. Grades. Diese Flächen seien mit φ_n , und das Flächenbüschel mit (φ_n) , bezeichnet. Offenbar kann diese Raumkurve 4. Ordnung I. Art verschiedene Formen annehmen (ein oder zweiteilig), und in Kurven niedrigerer Ordnung zerfallen. Die Grundraumkurve 4. Ordnung I. Art dieses Flächenbüschels sei mit g^4 bezeichnet. Die Normalen jeder der ∞^1 Flächen φ_n längs der Grundkurve g^4 bilden eine Regelfläche, die diese Fläche φ_n in dieser Grundkurve g^4 und noch in einer weiteren Raumkurve k_n durchdringt. Die stetige Menge derartiger ∞^1 Raumkurven k_n bildet eine interessante Fläche, die wir in dieser Arbeit betrachten und untersuchen werden. Es sei diese unbekannte Fläche mit F_n bezeichnet.

1. Über eine besondere ebene Kurve 3. Ordnung

Das Erzeugnis eines Strahlbüschels 1. Ordnung und eines Kurvenbüschels 2. Grades, die projektiv zugeordnet sind, ist, wie bekannt, eine Kurve 3. Ordnung. Nimmt man den Scheitel K des Strahlbüschels 1. Ordnung in einem der vier Grundpunkte, etwa A, B, C, D, des Kurvenbüschels 2. Grades an, z. B. $K \equiv A$, dann bekommt man auf der erzeugten Kurve 3. Ordnung im Punkt K einen Doppelpunkt. Das Strahlbüschel (K) und das Büschel der Berührungsgeraden der Kurven des Kurvenbüschels 2. Grades im Punkt $K \equiv A$ sind, wie bekannt, zwei kollokale projektiv zugeordnete Strahlbüschel, deren Doppelgeraden die Berührungsgeraden der erzeugten Kurve 3. Ordnung in deren Doppelpunkt K sind.

Es sei ein Kurvenbüschel 2. Grades durch seine vier Grundpunkte A, B, C, D gegeben. Der Grundpunkt A sei der Scheitel $K \equiv A$ eines Strahlbüschels (K) 2. Grades, das dem Kurvenbüschel 2. Grades so projektiv zugeordnet sein soll, dass die Berührungsgerade einer Kurve 2. Grades dieses Büschels im Punkt $K \equiv A$ auf

Ovaj rad je financirao Savezni fond za naučni rad i Republički fond za naučni rad SRH.

dem dieser Kurve zugeordneten Strahl im Strahlbüschel (K) senkrecht steht. Diese zwei kollokalen, auf diese Weise projektiv zugeordneten Strahlbüschel bilden also ein zirkularinvolutorisches Strahlbüschel, mit einem Paar isotroper Doppelgeraden. Die auf diese Weise durch derartige zwei Büschel erzeugte Kurve 3. Ordnung hat also den Punkt $K \equiv A$ als einen isolierten Doppelpunkt, in welchen sie durch ein isotropes Geradenpaar berührt wird. Es handelt sich also um eine derartige Kurve 3. Ordnung vom Geschlecht Null, deren ein Brennpunkt in ihren Doppelpunkt fällt.

In unserem Betrachtungen über die bisher unbekannte Fläche F_n werden wir sehr bald auf derartige Kurven 3. Ordnung treffen.

2. Ein besonderes Schnittkurvensystem der Fläche F_n

Man nehme auf der Grundkurve g4 des gegebenen Flächenbüschels (φ_n) 2. Grades einen Punkt K ganz beliebig an. Diese Raumkurve g4, die, wie bekannt, 4. Ordnung I. Art ist, werde in dem Punkt K durch die Gerade t berührt. Durch die Grundkurve g^4 und eine Ebene τ der Berührungsgeraden t ist, wie bekannt, eine Fläche φ_1 des Flächenbüschels (φ_n) bestimmt, die im Punkt Kdurch diese Ebene r berührt wird. Auf diese Weise ist bekanntlich das Ebenenbüschel [τ] mit der Achse t diesem Flächenbüschel (φ_n) 2. Grades projektiv zugeordnet. Die Normalen der Flächen φ_n des Büschels (φ_n) im Punkt K bilden ein Strahlbüschel (K_n) , das sich in der Ebene $a \perp t$ befindet, die die Berührungsebenen τ_n der Flächen φ_n im Punkt K in einem anderen, mit dem Strahlbüschel (K_n) kollokalen Strahlbüschel (K_t) so schneidet, dass die Strahlen eines zugeordneten Paares dieser zwei kollokalen Strahlbüschel zu einander senkrecht liegen. Diese zwei kollokalen Strahlbüschel bilden also ein zirkulares involutorisches Strahlbüschel, durch dessen konjugiert imaginäre Doppelgeraden ein isotropes Geradenpaar definiert ist.

Die Ebene $a \perp t$ schneidet das Flächenbüschel (φ_n) in einem Kurvenbüschel 2. Grades (K^2) , das wegen $(K_n) \wedge (K_t)$ dem Strahlbüschel (K_n) auch projektiv zugeordnet ist, also $(K_n) \wedge (K^2)$ gilt. Auf Grund des in Abt. 2. dieser Arbeit Erwähnten folgt, dass offenbar das Erzeugnis des Strahlbüschels (K_n) und des ihm projektiv zugeordneten Kurvenbüschels (K^2) eine Kurve k^3 3. Ordnung ist, die in ihrem isolierten Doppelpunkt K durch ein isotropes Geradenpaar berührt wird, also in diesem Punkt einen ihrer Brennpunkte hat.

Da wir den Punkt K auf der Grundkurve g^4 ganz beliebig angenommen haben, gilt offenbar dasselbe auch für alle anderen Punkte dieser Raumkurve g^4 . Durch die Berührungsgerade t und durch die zwei erwähnte isotropen Berührungsgeraden der Schnittkurve der Fläche F_n mit der Normalebene a in diesem Punkt K ist ein isotropes Ebenenpaar bestimmt, dessen Ebenen die betrachtete Fläche F_n in dem Punkt K berühren. Es gilt also folgender Satz:

Die Grundraumkurve 4. Ordnung I. Art eines Flächenbüschels 2. Grades ist eine isolierte Doppelkurve der Fläche F_n dieses Büschels, längs welcher diese Fläche F_n durch isotrope Ebenenpaare berührt wird.

Auf Grund unserer bisherigen Betrachtungen folgt, dass die Fläche F_n des Flächenbüschels (φ_n) durch die ∞^1 eben beschriebenen Kurven k_n^3 in den Normalebenen a_n der Grundkurve g^4 dieses Flächenbüschels gebildet wird. Es ist offenbar, dass diese Normalebenen a_n die Fläche F_n nicht nur in den kubischen Kurven k_n^3 schneiden, sondern noch in je einer ebener Kurve $\overline{k_n}$ bisher unbekannter Ordnung.

Da die durch ein Strahlbüschel 1. Ordnung und durch ein Kurvenbüschel 2. Grades erzeugte Kurve 3. Ordnung alle vier Grundpunkte des Kurvenbüschels 2. Grades enthält, schneiden offenbar alle kubischen Kurven k_n 3 in den Normalebenen α_n der Grundkurve g^4 diese Grundkurve noch in drei Punkten, von welchen wenigstens einer reell sein muss. Die Fläche F_n des Flächenbüschels (φ_n) enthält also die Grundkurve g^4 nicht nur als eine isolierte Doppelkurve, sondern es liegt diese Kurve noch wenigstens als eine einfache reelle Kurve auf dieser Fläche F_n . Auf diese Weise muss die Grundkurve g^4 wenigstens als eine dreifache Kurve der Fläche F_n betrachtet werden.

Wie schon erwähnt, schneiden die Normalebenen a_n der Grundkurve g^4 die Fläche F_n in ihren Punkten K_n ausser in den kubischen Kurven k_n^3 , noch in einer weiteren Kurve $\overline{k_n}$, die den Punkt K_n reell enthält, und sie enthält die weiteren drei Schnittpunkte auf der Grundkurve g^4 als isolierte Doppelpunkte und auch noch als einen wenigstens einfachen reellen Punkt.

Die die kubischen Teilschnittkurven k_n^3 der Fläche F_n mit den Normalebenen a_n der Grundkurve g^4 in ihren isolierten Doppelpunkten K_n berührenden isotropen Geradenpaare bilden offenbar eine Regelfläche isotroper Erzeugenden, die $(4 \cdot 2 + 2 \cdot 1) = 10$ -ten Grades ist ([1], S. 48) und reell nur die Raumkurve g^4 enthält.

3. Die Ordnung der Fläche F_n

Um die Ordnung der Fläche F_n zu bestimmen, werden wir zuerst den Grad derjenigen Regelfläche bestimmen, die durch die Normalen einer der Flächen φ_n des Flächenbüschels (φ_n) in den Punkten der Grundkurve g^4 gebildet wird. Alle derartigen ∞^1 Normalenregelflächen bilden ein Regelflächensystem, deren sämtliche Flächen nur die Grundkurve g^4 gemeinsam enthalten, und den Flächen φ_n des Flächenbüschels (φ_n) dieser Grundkurve g^4 eineindeutig zugeordnet sind. Es ist offensichtlich, dass die Berührungsebene einer Fläche φ_n des Flächenbüschels (φ_n) und die der ihr zugeordneten eben erwähnten Normalenregelfläche, in einem Punkt

 K_n der Grundkurve g^4 , aufeinander senkrecht stehen, und dadurch diese eineindeutige Zuordnung auf gewisse Weise auch als projektiv betrachtet werden kann. Unsere unbekannte Fläche F_n kann also als das Erzeugnis des eineindeutig zugeordneten Flächenbüschels (φ_n) 2. Grades der Grundkurve g^4 , und des beschriebenen Normalenregelflächensystems dieser Grundkurve ausgeführt werden, so wie es schon in der Einleitung dieser Arbeit angedeutet war.

Da, wie bekannt, die Kongruenz der Normalen einer Fläche 2. Grades 6.-ter Ordnung und 2.-ter Klasse ist, bilden alle diejenigen Normalen einer Fläche φ_n 2. Grades, die eine Gerade im Raum schneiden, eine Regelfläche 8. Grades. Die Fusspunkte der Erzeugenden dieser Regelfläche bilden auf der Fläche φ_n eine Raumkurve 4. Ordnung I. Art ([3], S. 64—65).

Man wähle in unserem Flächenbüschel (φ_n) der Grundkurve g^4 eine Fläche φ_1 . Die Normalen dieser Fläche φ_1 , die eine beliebig angenommene Gerade p schneiden und, wie eben erwähnt, eine Regelfläche 8. Grades bilden, haben auf dieser Fläche φ_1 Fusspunkte, die, wie erwähnt, auf dieser Fläche eine weitere Raumkurve s^4 4. Ordnung I. Art bilden. Diese zwei, auf der Fläche φ_1 sich befindenden, Raumkurven g^4 und s^4 haben, wie bekannt, acht gemeinsame Punkte (assoziierte Punkte). Auf Grund dessen folgt, dass die Regelfläche der längs der Grundkurve g^4 auf die Fläche φ_1 gestellten Normalen, und die eben erwähnte Regelfläche 8. Grades der Leitgeraden p, acht gemeinsame Erzeugende haben. Hieraus folgt weiterhin, dass die beliebig angenommene Gerade p die längs der Raumkurve g^4 auf die Fläche φ_1 gestellte Normalenregelfläche in acht Punkten schneidet, also diese Normalenregelfläche 8. Grades ist. Es gilt also der folgende Satz:

Die längs einer auf einer Fläche 2. Grades sich befindenden Raumkurve 4. Ordnung I. Art auf diese Fläche gestellten Normalen bilden eine Regelfläche 8. Grades.

Jeder der Flächen φ_n unseres Flächenbüschels (φ_n) ist eine derartige Normalenregelfläche 8. Grades der Grundkurve g^4 eineindeutig zugeordnet. Ausser in der Grundkurve g^4 schneiden sich zwei derartige, eineindeutig zugeordnete Flächen noch in einer Restraumkurve 12. Ordnung $\overline{k_n}^{12}$, da eine dieser zwei Flächen vom Grad zwei, und die andere vom Grad acht ist, also ihre Durchdringungskurve 12+4=16. Ordnung sein muss. Alle derartigen stetig im Raum verbundenen Restdurchdringungsraumkurven 12. Ordnung bilden also auch die untersuchte Fläche F_n .

Wenn die Normalenregelflächen der Grundkurve g^4 im Flächenbüschel (φ_n) ein gewöhnliches Regelflächenbüschel 8. Grades bildeten, so wie es die Flächen φ_n tun, wäre die Fläche F_n das Erzeugnis dieser zwei eineindeutig zugeordneten Flächenbüschel, müsste also die Ordnung 10 haben ([2], S. 274—275). Dies kann aber

nicht gelten, da die erwähnten Normalenregelflächen kein gewöhnliches Flächenbüschel 8. Grades bilden. Jede zwei Regelflächen 8. Grades dieses Normalenregelflächensystems durchdringen sich ausser in der Grundkurve g^4 noch in einer Raumkurve g_n^{60} 60. Ordnung, die nicht allen diesen ∞^1 Normalenregelflächen 8. Grades gemeinsam ist. Man sieht also, dass alle diese Normalenregelflächen 8. Grades wirklich kein gewöhnliches Flächenbüschel bilden, und deshalb auch der Schluss über das Erzeugnis dieser zwei eineindeutig zugeordneten Flächensysteme auf die bekannte Weise nicht richtig ist.

Die Durchdringungskurve 16. Ordnung jeder der Flächen φ_n des Büschels (φ_n) mit der ihr zugeordneten Normalenregelfläche 8. Grades längs der Grundkurve g^4 zerfällt, wie gezeigt, in diese Raumkurve g^4 4. Ordnung und in die erwähnte Restraumkurve 12. Ordnung. Da jeder Raumpunkt nur eine Fläche φ_n des Büschels (φ_n) enthält, kann die Fläche φ_n mit der betrachteten Fläche F_n keine anderen gemeinsamen Punkte haben, ausser den Punkten der Grundkurve g^4 , und den Punkten der erwähnten Restdurchdringungsraumkurve 12. Ordnung. Die Fläche F_n wird also tatsächlich, wie schon erwähnt, durch die stetige Menge derartiger ∞^1 Raumkurven 12. Ordnung gebildet. Auf Grund des eben Erwähnten folgt weiterhin auch, dass die Fläche F_n keine mehrfachen Punkte haben kann, ausser denjenigen, die die Grundkurve g^4 bilden.

In unseren bisherigen Betrachtungen sahen wir, dass die Fläche F_n eines Flächenbüschels (φ_n) dessen Grundkurve g^4 4. Ordnung I. Art zweimal isoliert imaginär und wenigstens einmal reell enthält. Wenn diese Grundkurve g^4 eine dreifache Kurve der Fläche F_n bliebe, also mit jeder der Flächen φ_n 2. Grades diese dreifache Raumkurve 4. Ordnung und die eben erwähnte einfache Restraumkurve 12. Ordnung gemein hätte, müsste jede der Flächen φ_n die Fläche F_n in einer zerfallenen und ausgearteten Raumkurve $4\cdot 3+12=24$. Ordnung durchdringen. In diesem Fall müsste also die Fläche F_n von der Ordnung zwölf sein. Die Ordnung der Fläche F_n hängt also ausschlieslich nur von der Mehrfachkeit der Grundkurve g^4 auf dieser Fläche ab. Es muss also zuerst gefunden werden, welche Vielfachheit ein Punkt der Grundkurve g^4 auf der Fläche F_n haben kann?

Wie wir schon vorher sahen, ist jeder dieser Punkte ein isolierter Doppelpunkt. Eine weitere Mehrfachkeit wird durch die Zahl derjenigen Normalen der Grundkurve g^4 gegeben, die einen der Punkte dieser Grundkurve enthalten und nicht deren Normale in diesem Punkt sind, sondern nur als gewöhnliche Bisekanten zur Raumkurve g^4 gehören. Jede dieser Normalen ist Normale einer der Flächen im Büschel (φ_n) , die diese Fläche in diesem zweiten Schnittpunkt mit der Grundkurve g^4 schneidet, weil alle Flächen φ_n die Grundkurve g^4 enthalten. Dieser zweite Schnittpunkt ist

also ein Punkt der Fläche F_n . Durch die Zahl der einen Punkt der Grundkurve g^4 enthaltenden Normalen dieser Raumkurve, die nicht Normalen in diesem Punkt sind, ist daher ihre Mehrfachkeit über zwei auf der Fläche F_n gegeben. Man suche also die Zahl derjenigen Normalen der Grundkurve g^4 , die einen ihrer Punkte enthalten, und nicht ihre Normalen in diesem Punkt sind.

Die Berührungsgeraden der Grundkurve g¹, die 4. Ordnung I. Art ist, bilden bekanntlich die bekannte Chaslessche Regelfläche 8. Grades ([3], S. 48). Diese Regeltangentenfläche schneidet die unendlich ferne Ebene in einer Kurve r^8 8. Ordnung. Offenbar sind die Punkte dieser unendlich fernen Kurve den Punkten der Grundkurve g4 eineindeutig zugeordnet. Die dieser unendlich fernen Kurve r8 durch den absoluten Kegelschnitt polar zugeordnete unendlich ferne Kurve t8 ist offenbar 8. Klasse, da sie durch die Polaren der Punkte der erwähnten Schnittkurve r⁸ 8. Ordnung, bezüglich des absoluten Kegelschnittes, eingehüllt wird. Die Berührungsgeraden dieser unendlich fernen Kurve t⁸ sind offenbar auch eineindeutig den Punkten der Grundkurve g4 zugeordnet, und jede durch einen derartigen Punkt K der Raumkurve g4 und durch die diesem Punkt zugeordnete unendlich ferne Berührungsgerade der Kurve t⁸ bestimmte Ebene ist die Normalebene der Grundkurve g^4 in diesem Punkt K.

Man wähle jetzt auf der Grundkurve g4 beliebig einen Punkt K. Die den Punkt K enthaltenden Bisekanten der Raumkurve g4 bilden einen Kegel 3. Grades, da diese Raumkurve 4. Ordnung ist. Dieser Kegel schneidet die unendlich ferne Ebene in einer Kurve 3. Ordnung u^3 , deren Punkte ebenfalls den Punkten der Kurve r^8 , und den Berührungsgeraden der Kurve t8, eineindeutig zugeordnet sind. Diejenigen Punkte der kubischen Kurve u^3 , die auf den ihnen zugeordneten Berührungsgeraden der Kurve t8 liegen, sind die unendlich fernen Punkte der den Punkt K enthaltenden Normalen der Raumkurve g4. Diese Normalen schneiden diese Raumkurve gi in solchen ihre Punkte senkrecht, die denjenigen Berührungsgeraden der Kurve t8 zugeordnet sind, auf welchen sich die ihnen zugeordneten Punkte der kubischen Kurve u^3 befinden. Da die Kurve u^3 3. Ordnung ist, und die ihr eineindeutig zugeordnete Kurve t^8 die 8. Klasse hat, bestehen, wie bekannt, 8+3=11Berührungsgeraden der Kurve t⁸, auf welchen die ihnen zugeordneten Punkte der Kurve u³ liegen ([1], S. 48). Der Punkt K der Raumkurve g^4 enthält also 11 Normalen dieser Raumkurve, die selbstverständlich nicht alle reell sein müssen, und nicht Normalen dieser Grundkurve im Punkt K sind. Es gilt also auch folgender Satz:

Die Grundkurve eines Flächenbüschels 2. Grades ist eine isolierte Doppelkurve und eine elffache Kurve, also eine dreizehnfache Kurve der Fläche F_n dieses Flächenbüschels 2. Grades.

Offenbar kann die Raumkurve g^4 als elffache Kurve der Fläche F_n auch teilweise oder ganz, zwei oder mehrfach isoliert sein.

Auf Grund der in diesem Satz ausgesprochenen Tatsache folgt, dass jede Fläche φ_n des Büschels (φ_n) dessen Fläche F_n in der dreizehnfachen Kurve g^4 4. Ordnung, und in einer Raumkurve 12. Ordnung durchdringt. Die Durchdringungskurve der Fläche F_n des Büschels (φ_n) mit jeder seiner Fläche φ_n ist also eine zerfallene Raumkurve $4\cdot 13+12=64$. Ordnung. Da jede Fläche φ_n 2. Ordnung ist, muss die Fläche F_n des Flächenbüschels (φ_n) die Ordnung 32 haben. Man hat also den gesuchten Satz in folgender Form gefunden:

Die Fläche F_n eines Flächenbüschels 2. Grades ist von der 32-Ordnung.

Die Art, die Ausartung und die Symmetrieen der Fläche F_n eines Flächenbüschels 2. Grades hängten offenbar von der Form. Art und Ausartung der Grundkurve g^4 dieses Flächenbüschels 2. Grades ab. Es wäre interessant diese Fläche F_n innerhalb der 11 bekannten Arten der Flächenbüschel 2. Grades (nach von Staudt) zu betrachten, aber derartige Betrachtungen der Fläche F_n eines Flächenbüschels 2. Grades sind in dieser Arbeit nicht vorgesehen.

LITERATUR:

- E. Müller J. Krames, Vorlesungen über Darstellende Geometrie, III. Band, Leipzig, 1931,
- [2] G. A. Peschka, Darstellende und projektive Geometrie, II. Band, Wien, 1884,
- [3] Th. Reye, Die Geometrie der Lage, III. Band, Leipzig, 1910.

(Eingegangen am 16. XII 1967.)

Mathematisches Institut der Universität Zagreb

JEDNO SVOJSTVO PRAMENA PLOHA 2. STUPNJA

Vilko Niče, Zagreb

Sadržaj

Prostornom krivuljom 4. reda I vrste određen je, kao što znamo, pramen ploha 2. stupnja. Ovu krivulju označimo s g^4 , a njen pramen ploha s (φ_n) . Postavimo li duž krivulje g^4 normale na jednu plohu φ pramena (φ_n) , tada te normale čine pravčastu plohu 8. stupnja. Ova pravčasta ploha prodire plohu φ u krivulji g^4 i još jednoj prostornoj krivulji 12. reda. Svakoj plohi φ_n pramena (φ_n) pridružena je na taj način jedna takva pravčasta ploha

8. stupnja i na svakoj od njih se nalazi jedna opisana prostorna krivulja 12. reda. Neprekinuti skup ovakvih prostornih krivulja 12. reda jednog pramena ploha 2. stupnja čini opću plohu F_n 32. reda.

Temeljna prostorna krivulja g^4 pramena (φ_n) je 13-struka krivulja te plohe F_n . Od toga je ta krivulja jedamput dvostruka izolirana, a u svakoj njenoj tački dira tu plohu F_n par izotropnih ravnina. Preostala višestrukost krivulje g^4 može biti rastavljeno ili potpuno ili djelomice izolirana, ali na plohi F_n ne postoje druge višestruke tačke osim onih na krivulji g^4 .